

Inputs in Distress: Geoeconomic Fragmentation and Firms' Sourcing

By G. Cariola, L. Panon, A. Borin, **Dennis Essers** (National Bank of Belgium), T. Padellini, L. Lebastard, P. Caka, E. Gentili, F. Requena, M. Mancini, A. Linarello, J. Timini

Discussion by Ziran Ding Bank of Lithuania

9th NBU-NBP Annual Research Conference: Economic and Financial Integration in a Story and Fragmenting World June 20th, 2025

The views expressed here do not necessarily reflect the position of Bank of Lithuania or Eurosystem

• This Paper

♦ How would disruptions to the supply of foreign critical inputs (FCI) might affect valued added at different levels of aggregation in the euro area?

- Why Should We Care?
 - ♦ Events: Covid-19, War in Ukraine, etc
 - ♦ Policies: Trade War, InvestEU, REPower EU, CHIPS/IRA Act, Dual Circulation, etc
- How Did They Answer the Question?
 - Firm-level balance sheet info + product-level customs data from 5 EU countries (BFISS)
 Empirical analysis + partial equilibrium analytical framework
- Main Takeaways
 - Short-term costs to supply chain disruptions of FCIs can be substantial
 - ◇ Heterogeneous picture at firm, sector, region and country level

• This Paper

♦ How would disruptions to the supply of foreign critical inputs (FCI) might affect valued added at different levels of aggregation in the euro area?

• Why Should We Care?

◊ Events: Covid-19, War in Ukraine, etc

◊ Policies: Trade War, InvestEU, REPower EU, CHIPS/IRA Act, Dual Circulation, etc

• How Did They Answer the Question?

Firm-level balance sheet info + product-level customs data from 5 EU countries (BFISS)
 Empirical analysis + partial equilibrium analytical framework

• Main Takeaways

♦ Short-term costs to supply chain disruptions of FCIs can be substantial

♦ Heterogeneous picture at firm, sector, region and country level

• This Paper

♦ How would disruptions to the supply of foreign critical inputs (FCI) might affect valued added at different levels of aggregation in the euro area?

• Why Should We Care?

◊ Events: Covid-19, War in Ukraine, etc

◊ Policies: Trade War, InvestEU, REPower EU, CHIPS/IRA Act, Dual Circulation, etc

• How Did They Answer the Question?

Firm-level balance sheet info + product-level customs data from 5 EU countries (BFISS)
 Empirical analysis + partial equilibrium analytical framework

• Main Takeaways

♦ Short-term costs to supply chain disruptions of FCIs can be substantial

♦ Heterogeneous picture at firm, sector, region and country level

• This Paper

♦ How would disruptions to the supply of foreign critical inputs (FCI) might affect valued added at different levels of aggregation in the euro area?

• Why Should We Care?

◊ Events: Covid-19, War in Ukraine, etc

◊ Policies: Trade War, InvestEU, REPower EU, CHIPS/IRA Act, Dual Circulation, etc

• How Did They Answer the Question?

Firm-level balance sheet info + product-level customs data from 5 EU countries (BFISS)
 Empirical analysis + partial equilibrium analytical framework

• Main Takeaways

- ◊ Short-term costs to supply chain disruptions of FCIs can be substantial
- Heterogeneous picture at firm, sector, region and country level

- 2 -

- Comment on the identification
- Comment on the analytical framework
- Additional comments

firm-level shock:
$$\varepsilon_i = \underbrace{\text{China-aligned share}_i}_{\text{Shir}} \times \underbrace{\delta}_{\text{Shir}}$$

- If the authors are serious with the shift-share approach as identification strategy, I would:
 - ♦ Discuss the endogeneity concern if only use a simple OLS regression
 - ♦ At least extend the time horizon to two years/periods (as in Autor et al (2013))
 - Share exo. (Goldsmith-Pinkham et al (2020)) vs. Shift exo. (Borusyak et al (2022))
 - Size of BFISS vs China-aligned economies, are the shifts really exogeneous? (Hummels et al. (2014). Remember 2001).
 - al (2014); Ballows ald Ollivier (2021))
 - Prides the search structure the shearmand and ideal shifts
 - Bridge the gap between the observed and ideal shifts
 - Include the "incomplete share" control
 - Lag shares to the beginning of the natural experiment
 - Report descriptive statistics for shifts in addition to observations
 - Implement balance tests for shifts in addition to the instrument
 - Produce the main estimates with correct standard errors and check sensitivity
- If not, consider dropping the term or replacing to avoid confusion

firm-level shock:
$$\varepsilon_i = \underbrace{\text{China-aligned share}_i}_{\text{Share}} \times \underbrace{\delta}_{\text{Shift}}$$

- If the authors are serious with the shift-share approach as identification strategy, I would:
 - Oiscuss the endogeneity concern if only use a simple OLS regression
 - At least extend the time horizon to two years/periods (as in Autor et al (2013))
 - Share exo. (Goldsmith-Pinkham et al (2020)) vs. Shift exo. (Borusyak et al (2022))
 - Size of BFISS vs China-aligned economies, are the shifts really exogeneous? (Hummels et al. (2014) Barrows and Objivier (2021))
 - Check-list for the shift-share approach (Borusyak et al (2025))
 - Bridge the gap between the observed and ideal shifts
 - Include the "incomplete share" control
 - Lag shares to the beginning of the natural experiment
 - Report descriptive statistics for shifts in addition to observations
 - Implement balance tests for shifts in addition to the instrument
 - Produce the main estimates with correct standard errors and check sensitivity
- If not, consider dropping the term or replacing to avoid confusion

firm-level shock:
$$\varepsilon_i = \underbrace{\text{China-aligned share}_i}_{\text{Share}} \times \underbrace{\delta}_{\text{Shift}}$$

- If the authors are serious with the shift-share approach as identification strategy, I would:
 - \diamond Discuss the endogeneity concern if only use a simple OLS regression
 - At least extend the time horizon to two years/periods (as in Autor et al (2013))
 - Share exo. (Goldsmith-Pinkham et al (2020)) vs. Shift exo. (Borusyak et al (2022))
 - ♦ Size of BFISS vs China-aligned economies, are the shifts really exogeneous? (Hummels et al (2014), Barrows and Oilivier (2021))
 - Check-list for the shift-share approach (Borusyak et al (2025))
 - Bridge the gap between the observed and ideal shifts
 - Include the "incomplete share" control
 - Lag shares to the beginning of the natural experiment
 - Report descriptive statistics for shifts in addition to observations
 - Implement balance tests for shifts in addition to the instrument
 - Produce the main estimates with correct standard errors and check sensitivity
- If not, consider dropping the term or replacing to avoid confusion

firm-level shock:
$$\varepsilon_i = \underbrace{\text{China-aligned share}_i}_{\text{Share}} \times \underbrace{\delta}_{\text{Shift}}$$

- If the authors are serious with the shift-share approach as identification strategy, I would:
 - ◊ Discuss the endogeneity concern if only use a simple OLS regression
 - At least extend the time horizon to two years/periods (as in Autor et al (2013))
 - > Share exo. (Goldsmith-Pinkham et al (2020)) vs. Shift exo. (Borusyak et al (2022))
 - ◊ Size of BFISS vs China-aligned economies, are the shifts really exogeneous? (Hummels et al (2014), Barrows and Oilivier (2021))
 - Check-list for the shift-share approach (Borusyak et al (2025))
 - Bridge the gap between the observed and ideal shifts
 - Include the "incomplete share" control
 - Lag shares to the beginning of the natural experiment
 - Report descriptive statistics for shifts in addition to observations
 - Implement balance tests for shifts in addition to the instrument
 - Produce the main estimates with correct standard errors and check sensitivity
- If not, consider dropping the term or replacing to avoid confusion.

firm-level shock:
$$\varepsilon_i = \underbrace{\text{China-aligned share}_i}_{\text{Share}} \times \underbrace{\delta}_{\text{Shift}}$$

- If the authors are serious with the shift-share approach as identification strategy, I would:
 - ♦ Discuss the endogeneity concern if only use a simple OLS regression
 - At least extend the time horizon to two years/periods (as in Autor et al (2013))
 - Share exo. (Goldsmith-Pinkham et al (2020)) vs. Shift exo. (Borusyak et al (2022))
 - Size of BFISS vs China-aligned economies, are the shifts really exogeneous? (Hummels et al (2014), Barrows and Oilivier (2021))
 - - Bridge the gap between the observed and ideal shifts
 - Include the "incomplete share" control
 - Lag shares to the beginning of the natural experiment
 - Report descriptive statistics for shifts in addition to observations
 - Implement balance tests for shifts in addition to the instrument
 - Produce the main estimates with correct standard errors and check sensitivity
- If not, consider dropping the term or replacing to avoid confusion

× 7

firm-level shock:
$$\varepsilon_i = \underbrace{\text{China-aligned share}_i}_{\text{Share}} \times \underbrace{\delta}_{\text{Shift}}$$

- If the authors are serious with the shift-share approach as identification strategy, I would:
 - ♦ Discuss the endogeneity concern if only use a simple OLS regression
 - At least extend the time horizon to two years/periods (as in Autor et al (2013))
 - ♦ Share exo. (Goldsmith-Pinkham et al (2020)) vs. Shift exo. (Borusyak et al (2022))
 - ◊ Size of BFISS vs China-aligned economies, are the shifts really exogeneous? (Hummels et al (2014), Barrows and Oilivier (2021))
 - - Bridge the gap between the observed and ideal shifts
 - Include the "incomplete share" control
 - Lag shares to the beginning of the natural experiment
 - Report descriptive statistics for shifts in addition to observations
 - Implement balance tests for shifts in addition to the instrument
 - Produce the main estimates with correct standard errors and check sensitivity
- ³. If not, consider dropping the term or replacing to avoid confusion

× /

firm-level shock:
$$\varepsilon_i = \underbrace{\text{China-aligned share}_i}_{\text{Share}} \times \underbrace{\delta}_{\text{Shift}}$$

- If the authors are serious with the shift-share approach as identification strategy, I would:
 - ♦ Discuss the endogeneity concern if only use a simple OLS regression
 - At least extend the time horizon to two years/periods (as in Autor et al (2013))
 - Share exo. (Goldsmith-Pinkham et al (2020)) vs. Shift exo. (Borusyak et al (2022))
 - ♦ Size of BFISS vs China-aligned economies, are the shifts really exogeneous? (Hummels et al (2014), Barrows and Oilivier (2021))
 - - Bridge the gap between the observed and ideal shifts
 - Include the "incomplete share" control
 - Lag shares to the beginning of the natural experiment
 - Report descriptive statistics for shifts in addition to observations
 - Implement balance tests for shifts in addition to the instrument
 - Produce the main estimates with correct standard errors and check sensitivity
- ³ If not, consider dropping the term or replacing to avoid confusion

× /

- 3 -

firm-level shock:
$$\varepsilon_i = \underbrace{\text{China-aligned share}_i}_{\text{Share}} \times \underbrace{\delta}_{\text{Shift}}$$

- If the authors are serious with the shift-share approach as identification strategy, I would:
 - ♦ Discuss the endogeneity concern if only use a simple OLS regression
 - At least extend the time horizon to two years/periods (as in Autor et al (2013))
 - Share exo. (Goldsmith-Pinkham et al (2020)) vs. Shift exo. (Borusyak et al (2022))
 - ♦ Size of BFISS vs China-aligned economies, are the shifts really exogeneous? (Hummels et al (2014), Barrows and Oilivier (2021))
 - - Bridge the gap between the observed and ideal shifts
 - Include the "incomplete share" control
 - Lag shares to the beginning of the natural experiment
 - Report descriptive statistics for shifts in addition to observations
 - Implement balance tests for shifts in addition to the instrument
 - Produce the main estimates with correct standard errors and check sensitivity
- If not, consider dropping the term or replacing to avoid confusion

- Cobb-Douglas production function (*K*, *L*, *M*), with *M* being a CES aggregation of FCI and non-FCI (Bachmann et al. (2022))
- Elasiticity of substitution between FCI and non-FCI: $\sigma \in [0, 0.2]$
- $\sigma = 0$, Leontief case, is this internally consistent with fixed and non-zero shares in Cobb-Douglas production function?
 - Possible justification: Putty-Clay approach (Atkeson and Kehoe, 1999; Gilchrist and Williams, 2000)
- With PE, can still consider separating FCI-intensive vs FCI-not intensive sectors
 - σ might not be common across sectors (not time-varying)
 Embedding input-output linkage allows you to explore the propagation of shocks and generate more accurate quantitative implications
- Strengthen the connection between the definition of your FCIs and your framework.
 - \diamond Some of the FCIs may be mainly affected via demand channel while your framework is from supply-side
- Mechanisms outside the model?

- Cobb-Douglas production function (*K*, *L*, *M*), with *M* being a CES aggregation of FCI and non-FCI (Bachmann et al. (2022))
- Elasiticity of substitution between FCI and non-FCI: $\sigma \in [0, 0.2]$
- $\sigma = 0$, Leontief case, is this internally consistent with fixed and non-zero shares in Cobb-Douglas production function?

◊ Possible justification: Putty-Clay approach (Atkeson and Kehoe, 1999; Gilchrist and Williams, 2000)

• With PE, can still consider separating FCI-intensive vs FCI-not intensive sectors

σ might not be common across sectors (not time-varying)
 Embedding input-output linkage allows you to explore the propagation of shocks and generate more accurate quantitative implications

Strengthen the connection between the definition of your FCIs and your framework

 \diamond Some of the FCIs may be mainly affected via demand channel while your framework is from supply-side

- Cobb-Douglas production function (*K*, *L*, *M*), with *M* being a CES aggregation of FCI and non-FCI (Bachmann et al. (2022))
- Elasiticity of substitution between FCI and non-FCI: $\sigma \in [0, 0.2]$
- $\sigma = 0$, Leontief case, is this internally consistent with fixed and non-zero shares in Cobb-Douglas production function?

 \diamond Possible justification: Putty-Clay approach (Atkeson and Kehoe, 1999; Gilchrist and Williams, 2000)

• With PE, can still consider separating FCI-intensive vs FCI-not intensive sectors

 $\diamond \sigma$ might not be common across sectors (not time-varying) \diamond Embedding input-output linkage allows you to explore the propagation of shocks and generate more accurate quantitative implications

Strengthen the connection between the definition of your FCIs and your framework

 \diamond Some of the FCIs may be mainly affected via demand channel while your framework is from supply-side

- Cobb-Douglas production function (*K*, *L*, *M*), with *M* being a CES aggregation of FCI and non-FCI (Bachmann et al. (2022))
- Elasiticity of substitution between FCI and non-FCI: $\sigma \in [0, 0.2]$
- $\sigma = 0$, Leontief case, is this internally consistent with fixed and non-zero shares in Cobb-Douglas production function?

Possible justification: Putty-Clay approach (Atkeson and Kehoe, 1999; Gilchrist and Williams, 2000)

• With PE, can still consider separating FCI-intensive vs FCI-not intensive sectors

 $\circ \sigma$ might not be common across sectors (not time-varying) \diamond Embedding input-output linkage allows you to explore the propagation of shocks and generate more accurate quantitative implications

• Strengthen the connection between the definition of your FCIs and your framework

 \diamond Some of the FCIs may be mainly affected via demand channel while your framework is from supply-side

- Cobb-Douglas production function (*K*, *L*, *M*), with *M* being a CES aggregation of FCI and non-FCI (Bachmann et al. (2022))
- Elasiticity of substitution between FCI and non-FCI: $\sigma \in [0, 0.2]$
- $\sigma = 0$, Leontief case, is this internally consistent with fixed and non-zero shares in Cobb-Douglas production function?

 Possible justification: Putty-Clay approach (Atkeson and Kehoe, 1999; Gilchrist and Williams, 2000)

• With PE, can still consider separating FCI-intensive vs FCI-not intensive sectors

 $\circ \sigma$ might not be common across sectors (not time-varying) \diamond Embedding input-output linkage allows you to explore the propagation of shocks and generate more accurate quantitative implications

• Strengthen the connection between the definition of your FCIs and your framework

 \diamond Some of the FCIs may be mainly affected via demand channel while your framework is from supply-side

- Cobb-Douglas production function (*K*, *L*, *M*), with *M* being a CES aggregation of FCI and non-FCI (Bachmann et al. (2022))
- Elasiticity of substitution between FCI and non-FCI: $\sigma \in [0, 0.2]$
- $\sigma = 0$, Leontief case, is this internally consistent with fixed and non-zero shares in Cobb-Douglas production function?

◊ Possible justification: Putty-Clay approach (Atkeson and Kehoe, 1999; Gilchrist and Williams, 2000)

• With PE, can still consider separating FCI-intensive vs FCI-not intensive sectors

 $\circ \sigma$ might not be common across sectors (not time-varying) \diamond Embedding input-output linkage allows you to explore the propagation of shocks and generate more accurate quantitative implications

• Strengthen the connection between the definition of your FCIs and your framework

 \diamond Some of the FCIs may be mainly affected via demand channel while your framework is from supply-side

- Cobb-Douglas production function (*K*, *L*, *M*), with *M* being a CES aggregation of FCI and non-FCI (Bachmann et al. (2022))
- Elasiticity of substitution between FCI and non-FCI: $\sigma \in [0, 0.2]$
- $\sigma = 0$, Leontief case, is this internally consistent with fixed and non-zero shares in Cobb-Douglas production function?

◊ Possible justification: Putty-Clay approach (Atkeson and Kehoe, 1999; Gilchrist and Williams, 2000)

• With PE, can still consider separating FCI-intensive vs FCI-not intensive sectors

 $\circ \sigma$ might not be common across sectors (not time-varying) \diamond Embedding input-output linkage allows you to explore the propagation of shocks and generate more accurate quantitative implications

• Strengthen the connection between the definition of your FCIs and your framework

 \diamond Some of the FCIs may be mainly affected via demand channel while your framework is from supply-side

- Cobb-Douglas production function (*K*, *L*, *M*), with *M* being a CES aggregation of FCI and non-FCI (Bachmann et al. (2022))
- Elasiticity of substitution between FCI and non-FCI: $\sigma \in [0, 0.2]$
- $\sigma = 0$, Leontief case, is this internally consistent with fixed and non-zero shares in Cobb-Douglas production function?

◊ Possible justification: Putty-Clay approach (Atkeson and Kehoe, 1999; Gilchrist and Williams, 2000)

• With PE, can still consider separating FCI-intensive vs FCI-not intensive sectors

 $\circ \sigma$ might not be common across sectors (not time-varying) \diamond Embedding input-output linkage allows you to explore the propagation of shocks and generate more accurate quantitative implications

• Strengthen the connection between the definition of your FCIs and your framework

 \diamond Some of the FCIs may be mainly affected via demand channel while your framework is from supply-side

- Cobb-Douglas production function (*K*, *L*, *M*), with *M* being a CES aggregation of FCI and non-FCI (Bachmann et al. (2022))
- Elasiticity of substitution between FCI and non-FCI: $\sigma \in [0, 0.2]$
- $\sigma = 0$, Leontief case, is this internally consistent with fixed and non-zero shares in Cobb-Douglas production function?

◊ Possible justification: Putty-Clay approach (Atkeson and Kehoe, 1999; Gilchrist and Williams, 2000)

• With PE, can still consider separating FCI-intensive vs FCI-not intensive sectors

 $\circ \sigma$ might not be common across sectors (not time-varying) \diamond Embedding input-output linkage allows you to explore the propagation of shocks and generate more accurate quantitative implications

• Strengthen the connection between the definition of your FCIs and your framework

 \diamond Some of the FCIs may be mainly affected via demand channel while your framework is from supply-side

• Extending the time horizon

- ♦ Extensive margin
- ♦ Trace those firms that are more exposed to FCI: profitability, product basket, etc

• Further leveraging the data

- \diamond Prices vs Quantity \Rightarrow different policy implications
- > Do they vary by the sourcing countries?
- Enrich heterogeneity

 - Vithin-country: cross-sectors, cross-regions
- More discussion on δ ?

- Extending the time horizon
 - \diamond Extensive margin
 - ◊ Trace those firms that are more exposed to FCI: profitability, product basket, etc
- Further leveraging the data
 - \diamond Prices vs Quantity \Rightarrow different policy implications
 - ◊ Do they vary by the sourcing countries?
- Enrich heterogeneity
 - ♦ Cross-country
 - Within-country: cross-sectors, cross-regions
- More discussion on δ ?

- Extending the time horizon
 - \diamond Extensive margin
 - ♦ Trace those firms that are more exposed to FCI: profitability, product basket, etc

• Further leveraging the data

- \diamond Prices vs Quantity \Rightarrow different policy implications
- ◊ Do they vary by the sourcing countries?
- Enrich heterogeneity
 - ♦ Cross-country
 - ◊ Within-country: cross-sectors, cross-regions
- More discussion on δ ?

- Extending the time horizon
 - \diamond Extensive margin
 - ◊ Trace those firms that are more exposed to FCI: profitability, product basket, etc
- Further leveraging the data
 - \diamond Prices vs Quantity \Rightarrow different policy implications
 - ◊ Do they vary by the sourcing countries?
- Enrich heterogeneity
 - ♦ Cross-country
 - ◊ Within-country: cross-sectors, cross-regions
- More discussion on δ ?

- Extending the time horizon
 - \diamond Extensive margin
 - ◊ Trace those firms that are more exposed to FCI: profitability, product basket, etc
- Further leveraging the data
 - \diamond Prices vs Quantity \Rightarrow different policy implications
 - \diamond Do they vary by the sourcing countries?
- Enrich heterogeneity
 - ♦ Cross-country
 - Over the overall of the overall o
- More discussion on δ ?

- Extending the time horizon
 - \diamond Extensive margin
 - ◊ Trace those firms that are more exposed to FCI: profitability, product basket, etc
- Further leveraging the data
 - \diamond Prices vs Quantity \Rightarrow different policy implications
 - ◊ Do they vary by the sourcing countries?
- Enrich heterogeneity
 - \diamond Cross-country
 - Within-country: cross-sectors, cross-regions
- More discussion on δ ?

.

- Extending the time horizon
 - $\diamond \ Extensive \ margin$
 - ◊ Trace those firms that are more exposed to FCI: profitability, product basket, etc
- Further leveraging the data
 - \diamond Prices vs Quantity \Rightarrow different policy implications
 - ◊ Do they vary by the sourcing countries?
- Enrich heterogeneity
 - \diamond Cross-country
 - Within-country: cross-sectors, cross-regions
- More discussion on δ ?

.

- Super interesting and timely paper! With rich policy implications.
- I would at least:
 - Sharpen the identification strategy of the empirical part
 - Defend the PE framework with more discussions, possibly enrich the framework to allow more accurate quantitative implications
- Looking forward to reading the next edition of the paper!

